Geometrical Aspects of Integrability in Nonlinear Realization Scheme Invited Talk Delivered in a Workshop on " Dynamical Systems: Modern Developments " (held From

نویسنده

  • R P Malik
چکیده

We discuss the integrability properties of the Boussinesq equations in the language of geometrical quantities defined on an appropriately chosen coset manifold connected with the W 3 algebra of Zamolodchikov. We provide a geometrical interpretation to the commuting conserved quantities, Lax-pair formulation, zero-curvature representation, Miura maps, etc. in the framework of nonlinear realization method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometrical Aspects of Integrability in Nonlinear Realization Scheme Invited Talk Delivered in a Workshop on " Dynamical Systems: Modern Developments " (held From

We discuss the integrability properties of the Boussinesq equations in the language of geometrical quantities defined on an appropriately chosen coset manifold connected with the W 3 algebra of Zamolodchikov. We provide a geometrical interpretation to the commuting conserved quantities, Lax-pair formulation, zero-curvature representation, Miura maps, etc. in the framework of nonlinear realizati...

متن کامل

Geometrical Aspects of Integrability in Nonlinear Realization Scheme Invited Talk Delivered in a Workshop on " Dynamical Systems: Recent Developments " (held From

We discuss the integrability properties of the Boussinesq equations in the language of geometrical quantities defined on an appropriately chosen coset manifold connected with the W 3 algebra of Zamolodchikov. We provide a geometrical interpretation to the commuting conserved quantities, Lax-pair formulation, zero-curvature representation, Miura maps, etc. in the framework of nonlinear realizati...

متن کامل

Geometrical origin of integrability for Liouville and Toda theory ⋆ Kenichiro Aoki and

We generalize the Lax pair and Bäcklund transformations for Liouville and Toda field theories as well as their supersymmetric generalizations, to the case of arbitrary Riemann surfaces. We make use of the fact that Toda field theory arises naturally and geometrically in a restriction of so called W–geometry to ordinary Riemannian geometry. This derivation sheds light on the geometrical structur...

متن کامل

Determination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method

Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...

متن کامل

2011 Workshop on Nonlinear Analysis and Optimization Department of Mathematics National Taiwan Normal

Almost all of the technical methods, which are used in the theory of nonlinear dynamical systems, originated in the theory of one dimensional dynamical systems. In this talk, a relation between nonlinear ergodic theorems, which are developed by Prof. Takahashi and other researchers, and the asymptotic behavior of one dimensional dynamical systems will be delivered, and moreover, application of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000